

# **Oncologic Emergencies: Spinal Cord Compression**

Saturday, April 13 • 9:45-11 am

Note one action you'll take after attending this session:

#### Carol Viele, RN, MS, CNS, OCN

UCSF School of Nursing San Francisco, CA carol.viele@ucsf.edu

#### **Key Session Takeaways**

- 1. Describe the most common cancers associated with cord compression.
- 2. Identify at least two symptoms associated with cord compression.
- 3. Describe the most appropriate nursing interventions for cord compression.







|                | Disclosures |  |
|----------------|-------------|--|
| No Disclosures |             |  |
|                |             |  |
|                |             |  |
|                |             |  |

#### **Objectives**

- Describe the most common cancers associated with spinal cord compression
- Identify at least two symptoms associated with spinal cord compression
- Describe the most appropriate nursing interventions for spinal cord compression

#### **Definition**

- A mass effect from the tumor with associated edema which results in ischemia and neural damage to the spinal cord
- Cord compression is the initial presentation of a malignancy in 20% 34% of patients

# Epidemiology Annual incidence is approximately 3 to 5% of patients with cancer Malignancies most commonly associated with spinal cord compression Breast Lung Prostate Multiple myeloma





## Pathophysiology

• Cord compression is a function of spinal anatomy

- Cord is enclosed by a protective ring of bones comprised of the vertebral body anteriorly, the pedicles laterally and the lamina and spinous processes posteriorly.
- Within this ring is the thecal sac , the outermost layer of which is comprised the dura.
- Between the bone and the dura lies the epidural space, which normally contains fat and the venous plexus





## • The most common source of cord compression is metastasis to the epidural space with or without bony involvement

• Tumors can also through the reach the epidural space by direct extension through the intervertebral foramen

• Some tumors occur in the cord itself





## Symptoms

• Early cord compression may be asymptomatic

• Back Pain:





• 80-95% of patients with MSCC will experience it

Precedes other neurologic symptoms on average by 7 weeks

#### Level of Involvement

| Spine Level | Percentage |
|-------------|------------|
| Cervical    | 10         |
| Thoracic    | 70         |
| Lumbosacral | 20         |
|             |            |
|             |            |
|             |            |

#### **Symptoms**

• Pain is often worse at night due to the diurnal variation levels in in endogenous corticosteroids

- Local pain may be due to disruption of the periosteum or Dural nerves, the spinal cord or the paravertebral soft tissue
- The frequent alleviation of pain with steroids suggest inflammation or neuronal irritation plays a significant role

#### **Symptoms**

Pain may develop a radicular quality, it may radiate into a limb with movement of the spine or Valsalva maneuver

• Radicular pain is noted more often in lumbosacral lesions over thoracic lesions





| Thoracic spine         | Upper<br>extremities     | Triceps and wrist<br>extensors |
|------------------------|--------------------------|--------------------------------|
| Increasing<br>weakness | Loss of gait<br>function | Paralysis                      |
| Advanced stages        | Loss of<br>ambulation    |                                |

#### **Symptoms**

• Ataxia- loss of full control of body movements

• New gait ataxia in setting of back pain should elevate the suspicion of a cord compression

• In the absence of sensory loss

• Etiology :Spinocerebellar tract dysfunction

#### **Sensory Findings**

- Less frequent than motor
- Ascending numbness and paresthesia
- Radicular distribution
- Lumbar cord compression
- Bilateral leg weakness
- Thoracic compression





#### Cauda Equina Syndrome

• Condition that occurs when the bundle of nerves below the end of the spinal cord known as the cauda equina is damaged

• Symptoms include:

- Pain that radiates down the leg
  Low back pain
- Numbness around anus
- Loss of bowel or bladder control

#### **Manifestations**

• Pain

- Localized
- Radicular
- Severity
- Position changes
- Cough
- Weight bearing
- Valsalva maneuver



#### **Manifestations**

- Weakness 75-85%
  - May progress rapidly
  - Bilateral
  - Corresponds to the level of cord involvemnent
- Spasticity
- Hyperreflexia
- Abnormal stretch reflexes
- Extensor plantar response

#### Imaging

- CT scans do NOT demonstrate the spinal cord or epidural space clearly even when IV contrast is used
- Severe osteoporosis by CT can depict metastatic disruption of the bony cortex surrounding the spinal canal
- · Highly predictive of epidural tumor extension
- Myelography has largely been replaced by MRI

#### Diagnostic evaluation

• MRI of entire spine

IV contrast

• MRI

• 20-35% have non-contiguous compression

• MRI

- Sensitivity- 93%
- Specificity 97%

#### **Diagnostic evaluation**

• For patients unable to undergo MRI

CT Myelography

• Alternative to MRI:

- Mechanical valves
- Pacemakers
- Paramagnetic implants,
- Embedded metal
- Severe claustrophobia

#### Diagnosis

• MRI - (Tool of choice)

- Determine prevertebral, vertebral, extradural, intradural, extramedullary and intramedullary lesions
- Anatomic visualization:
  - Sagittal and axial images of the spinal cord

• Fine needle aspiration

Tissue confirmation

#### **ONS 44th Annual Congress**

#### **Treatment**

- Glucocorticoids are part of the standard regimen as a bridge to definitive treatment and pain palliation
- High dose steroids in patients with pain and deficits
- Steroids are not routinely started for those with normal neurologic function and small epidural lesions
- Work presumably via an anti-edema effect in steroid responsive malignancies
- Provides analgesia and preserves neurologic function

# Pain management Bedrest for spinal instability

## Venous Thromboembolism Prophylaxis • Anticoagulation • IVC filter

#### Pain Management – Opioids

Morphine

Oxycodone

- Immediate release Sustained release
- - Sustained release

Hydromorphone

- Immediate release
- Sustained release
- Immediate release • Fentanyl

#### **Pain Management**

- Neuropathic pain adjuvants
  - Dexamethasone
  - Gabapentin
  - Pregabalin
  - Amitriptyline
  - Nortriptyline

#### **Pain Management**

- Bone pain adjuvants
  - Zoledronic acid
  - Pamidronate
  - Acetaminophen

### Pain Management

Bowel regimen medications

Senna

- Polyethylene glycol (Miralax)
- Bisacodyl suppository

#### **Treatment**

• Spinal instability is an indicator for surgical stabilization, regardless of grade and radiosensitivity

• Pain from an unstable spine will not be relieved by radiotherapy and there is lack of evidence is an effective technique for reducing pain

• Surgical stabilization has data for reducing pain

#### **Treatment**

Criteria:

- Primary tumor type
- Level of myelopathy
- Degree of spinal block
- Potential for neurologic reversibility

#### **Treatment - Surgery**

- Radical resection if an a candidate
- Complete block
- Single lesion where complete removal is possible
- Diagnosis is uncertain
- Mild deficits
- Data supports surgery over treatment with RT if patient is a good surgical candidate

#### **Treatment - Surgery**

• Surgery main goals are:

- Preservation and restoration of mechanical stability to effectively manage movement-induced pain
- Circumferential decompression of the spinal cord to preserve neurologic function and allow delivery of adequate doses of radiation to entire tumor volume while avoiding toxicity to the spinal cord

#### **Treatment**

 Separation surgery plus stereotactic body radiation therapy

- Combined therapy provides durable local control and diminishes the need for extensive tumor excision and prolonged postoperative recovery
- Separation surgery provides for decompression of the cord, then radiation can follow

#### Treatment

- Separation surgery plus stereotactic body radiation therapy
  - Combined therapy provides durable local control and diminishes the need for extensive tumor excision and prolonged postoperative recovery
  - Separation surgery provides for decompression of the cord, then radiation can follow



#### **Treatment**

#### Stereotactic body radiotherapy

- Used for patients with radioresistant or recurrent spinal mets that are diagnosed early before high grade cord compression has developed
- Excellent pain relief and tumor control
- Risks are 10-15% risk of vertebral compression fracture, along with mucositis, esophagitis, dysphagia, diarrhea and transient radiculitis

#### Treatment

• Minimally Invasive Procedures

- Vertebroplasty, Kyphoplasty and percutaneous spinal instrumentation
- Spinal instability from cord compression are NOT candidates for any minimally invasive intervention
- For patients with fractures extending into pedicles and extensive lytic destruction who do not require surgical decompression percutaneously placed spinal instrumentation can be used.

#### **Treatment**

• Systemic therapy

- Chemo sensitive tumors, systemic therapy may be used, but most tumors with a cord compression are NOT chemo sensitive therefore it is not the only treatment utilized
- Systemic therapy usually requires days to weeks to work and those with cord compression require treatment to act more rapidly than systemic therapy provides

#### **Treatment**

- Systemic therapy may be considered with
  - Hodgkin lymphoma
  - Non-Hodgkin lymphoma
  - Neuroblastoma
  - Germ cell neoplasms
  - Breast cancer

#### Treatment

Rehabilitation Care

- Inpt –PT and OT
- Management of bowel and bladder alterations
- Decubitus ulcer prevention

Post acute care

• Can be delivered in home, Rehabilitation facility or skilled nursing facility

#### Psychological Concerns and Palliative Care

• Coping, family and caregiving needs, advanced care planning

• Social workers to provide therapeutic counseling

• Psychiatric referral for those with significant anxiety or depressive symptoms

#### **Prognosis**

• Overall survival is approximately 6 months reported in a large historical series, but a modern series demonstrates survival of several years after treatment

• Outcome is better in ambulatory patients, and approximately one-half of patients surviving one year are ambulatory at that time

#### **Prognosis**

- Median survival for ambulatory patients prior to radiation therapy is 8-10 months compared with 2-4 months for those who are non-ambulatory
- For those who remain non-ambulatory at conclusion of radiation survival is only 1 month

#### **Prognosis**

- Neurologic function
  - Pretreatment neurologic function is strongest predictor of post-treatment neurologic function
    Most series have demonstrated 67-82% who are
  - ambulatory when treated remain so at conclusion of therapy
  - Approximately 1/3 of non ambulatory patients due to paraparesis regain the ability to walk with therapy as do 2-6% who are paraplegic. (NB higher rates are noted in radiosensitive neoplasms

#### **Prognosis**

- Neurologic function
  - Veurologic function
     Likelihood of being ambulatory after treatment is higher among patients whose motor deficits developed more slowly over at least 2 weeks versus 1 week prior to therapy and in non-ambulatory patients whose treatment is begun less than 12 hours after loss of ambulation
     Among patients who require a Foley catheter before therapy 20-40% become catheter free
     Discase overthat also influonces outcome.

  - Disease extent also influences outcome
  - Complete subarachnoid block produced by the tumor is a poor prognostic sign



- Thorough assessment and early MD/Provider
- notification of changes in
- Pain
- Sensory function
- Motor function
- Urinary function
- Bowel function

#### **Nursing Interventions**

- Maintenance of functional status
  - Bowel program
  - Bladder program
  - Skin care
- Rehabilitation services
  - PT
  - OT

#### **Nursing Interventions**

- Education
  - Patient
  - Family
  - Significant others
  - Care givers



#### **Nursing Interventions**

• Referrals

- Care coordination
- Case manager
- Home care
- Rehabilitation center
- Skilled nursing facility

Hospice

#### **References**

• Schulmeister, L., Gatlin, C.,(2008) Spinal cord compression in Oncology Nursing Secrets, Gates, R. and Fink, R. (eds) Hanley and Belfus, Philadelphia, 546-550

• Quinn, J., De Angelis, L.(2000) "Neurologic emergencies in the cancer patient", Semin Oncol, 27: 311-321

• Tan, S. Recognition and Treatment of Oncologic Emergencies (2002), *Journal of Infusion Nursing*, 25:3, 182-188

#### **References**

- <u>www.uptodate.com</u>, Spinal Cord Compression, Accessed 12/10/18
- Ropper, AE and Ropper AH , Acute Spinal Cord Compression, N Engl J Med 2017 April 6:376 (14) 1358-1369. doi: 10.1056/NEJMra1516539
- Lawton, A, Lee, K., Cheville, A. et al Assessment and Management of Patients with Metastatic Spinal Cord Compression: A Multidisciplinary Review, Journal of Clinical Oncology, 2018, Vol 37, Issue 1, P 61-71